Poincaré-type inequality for Lipschitz continuous vector fields
نویسندگان
چکیده
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولA Note on the Poincaré Inequality for Lipschitz Vector Fields of Step Two
We provide a Poincaré inequality for families of Lipschitz continuous vector fields satisfying a Hörmander-type condition of step two.
متن کاملRotation of Trajectories of Lipschitz Vector Fields
– We prove that in finite time a trajectory of a Lipschitz vector field in R can not have infinite rotation around a given point. This result extends to the mutual rotation of two trajectories of a field in R: this rotation is bounded from above on any finite time interval. The bounds we give are only in terms of the Lipschitz constant of the field and the length of the time interval.
متن کاملErgodicity For SDEs and Approximations: Locally Lipschitz Vector Fields
The ergodic properties of SDEs, and various time discretizations for SDEs, are studied. The ergodicity of SDEs is established by using techniques from the theory of Markov chains on general state spaces. Application of these Markov chain results leads to straightforward proofs of ergodicity for a variety of SDEs, in particular for problems with degenerate noise and for problems with locally Lip...
متن کاملThe ordinary differential equation with non-Lipschitz vector fields
Sunto. – In this note we survey some recent results on the well-posedness of the ordinary differential equation with non-Lipschitz vector fields. We introduce the notion of regular Lagrangian flow, which is the right concept of solution in this framework. We present two different approaches to the theory of regular Lagrangian flows. The first one is quite general and is based on the connection ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2016
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2015.09.001